推广 热搜: 复合材料  玻璃  碳纤维  玻璃纤维  测试  产能  热塑  预浸料  直径  价格 

玻璃纤维行业深度报告:助力汽车轻量化的热塑纱

   日期:2022-08-13     来源:中信建投证券    浏览:255    评论:0    
核心提示:一、玻璃纤维为主流增强材料,技术拉动产品结构升级1.1 玻纤作为主流增强材料,下游应用可涵盖交通领域玻璃纤维是以叶蜡石、石英
  一、玻璃纤维为主流增强材料,技术拉动产品结构升级

1.1 玻纤作为主流增强材料,下游应用可涵盖交通领域
 
玻璃纤维是以叶蜡石、石英砂、石灰石等矿物为原料,配合纯碱、硼酸等化工原料经高温熔制、拉丝、络纱、织布等工艺制造成的纤维增强材料;传统的金属材料及非金属材料相比,玻纤具有耐高温、抗腐蚀、强度高、比重轻、延伸小及电绝缘性能好等特性。玻璃纤维复合材料是以玻璃纤维及其制品(玻纤纱、布、毡等) 为增强材料,以合成树脂为基体材料,经复合工艺制作而成的功能型材料;玻纤复材不仅继承了玻纤自身的优 点,还具备节约能源、设计自由度大、以及适应性广等特点。目前玻纤类占到增强纤维复材整体约 90%,广泛用于建筑、工业管罐、汽车与交通运输、电子电气、风电等领域。
 
玻纤多样性决定玻纤增强材料多元化发展。目前,国际上玻纤应用品种已达 5,000 多种,60,000 多个规格用途,品种与规格以每年平均增长 1,000-1,500 种的速度迅猛发展,品类繁多的玻璃纤维也决定了玻璃纤维增强材料的多元化。
 
玻璃纤维增强材料按增强材料的类型可以分为玻纤纱增强复合材料以及玻纤毡增强复合材料;按照基体树脂的不同,可分为玻纤增强热固性复合材料以及玻纤增强热塑性复合材料,其中玻纤增强热固性复 合材料主要以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,热塑性以聚丙烯 树脂(PP)、聚酰胺(PA)为主。多元化的玻纤增强材料性能各异,为适应不同领域的需求奠定了基础。
 
 
玻纤增强复合材料已形成完整产业链,应用领域广泛。目前,世界玻纤产业已形成从玻纤、玻纤制品到玻 纤复合材料的完整产业链,其上游产业涉及采掘、化工、能源,下游产业涉及建筑建材、电子电器、轨道交通、 石油化工、汽车制造等传统工业领域及航天航空、风力发电、过滤除尘、环境工程、海洋工程等新兴领域。
 
中国交通领域玻纤需求占比 16%,较全球尚有提升空间。据 OC 统计,2020 年全球玻璃纤维市场中建筑领 域(包括住宅、商业建筑、水储运等)的玻纤需求约占 35%;交通运输(轿车、卡车、公共汽车、火车、航海 等)约占 26%,电子电器等消费领域 15%,工业领域(管罐等)13%,风电及能源领域 11%。国内玻纤应用领 域与全球类似,但交通运输领域占比 16%,较全球比例尚有一定提升空间。
 
1.2 技术升级提高材料性能,长玻纤增强热塑性材料成为主流
 
从热固到热塑、从短玻纤到长玻纤,汽车领域玻纤应用场景持续开拓。20 世纪 30 年代玻璃纤维问世以来, 如何将玻纤更好的用于增强复合材料成为热点问题。
 
20 世纪中叶,人们首先将玻璃纤维与热固性树脂相复合, 推出 SMC 为代表的的热固性复合材料,可用于汽车的车门、保险杠等制件。1972 年人们第一次将玻璃纤维毡用做增强材料,研发出 GMT 即玻纤毡增强热塑性材料,多应用于座椅骨架、车顶棚、发动机保护罩等。20 世 纪 90 年代,长玻纤热塑材料 LFT 的推出,将应用领域拓展至汽车前端支架、仪表盘、车底护板等。当前玻纤增强材料技术大幅提升,应用领域也明显拓宽。从技术发展的步伐判断,玻纤增强材料整体的发展趋势:由玻纤增强热固性复合材料向玻纤增强热塑性复合材料发展,由短玻纤增强复合材料向长玻纤增强复合材料发展。
 
从热固到热塑
 
SMC 材料开启玻纤增强材料工艺化应用大门。SMC 是一种玻纤增强热固性复合材料,被定义为可压塑的、 B 阶的片状热固性复合材料,实质上是一种特殊形态的预浸料。最早的 SMC 配方以不饱和聚酯为基体树脂,后 来升级到可选用性能更好但成本更高的乙烯基酯树脂。其性能优越,玻璃相对密度(比重)小,为 1.6~2.0, 比最轻的金属铝还轻;比强度高,远高于钢材和铸铁。同钢材、铸铁比较,抗拉强度虽与钢材有一定差距,但已与铸铁相当甚至超过,而压缩强度和弯曲强度已接近于钢材。
 
 
玻纤增强热固性复合材料除具有良好的机械力学性能、物理化学性能外,还具有良好的加工性能和成型性能。通常采用的制造工艺有手糊、树脂传递闭合模压工艺(RTM)、片状模压成型工艺(SMC)。其中手糊和 RTM 成型周期长,不适合进行大批量的生产。而 SMC 工艺有较高的生产效率,制品尺寸精确,表面光洁,多数结构 复杂的制品可一次成型,无需有损制品性能的二次加工,制品外观及尺寸的重复性好,容易实现机械化和自动化生产,适合于制造批量大的结构件、连接件。自 20 世纪 60 年代德国拜耳公司实现了片状模塑料(SMC)工业化生产后,70 年代 SMC 得到迅速发展,压制成型了各种车辆零件和壳体。由于产品质量好、机械化程度高, 推动了复合材料在车辆制造中的发展和应用。在 1990s 末期,美国的燃料价格空前高涨,汽车减重的压力空前 巨大,SMC 材料由于能良好的替代汽车上的部分金属,发展达到顶峰。
 
SMC 发展受限于材料性能,玻纤增强热塑性材料有望接下玻纤增强材料发展接力棒。如果说 SMC 材料叩 开了玻纤复合材料的大门,那么玻纤增强热塑性材料则给行业的发展带来了新的希望。当 SMC 材料开始大规模应用时,由于自身材料性能的限制,在面对很多更高要求的挑战时就会显得力不从心,例如 SMC 进入了很多汽车器件,突然间要承受一些汽车制造商采用的范围更宽的电泳和涂装温度,因而在很多工厂中出现了起泡和油漆空鼓的问题,同时,废气治理及固废回收处理技术不成熟,也是影响热固性复合材料生产和应用的主要问题。玻纤增强热塑性材料(GMT 为例)自 1972 年研发成功以来,由于其自身的种种优点,不仅成功对 SMC 材料 的原有领域实现了升级,更是填补了 SMC 材料的空白领域,被誉为最受宠的“21 世纪绿色复合材料”。
 
2013-2021 年,中国热塑产量复合增速 9.05%,高于热固 7.45 个百分点。热塑性复合材料投资门槛较高, 但产品生产过程自动化程度高、较易实现清洁生产及产品回收再利用,并且凭借其优良的性能对热固实现一定替代。2013-2021 年,热塑产量从 137 万吨提升至 274 万吨,CAGR 达 9.05%;同期热固产量从 273 万吨提升至 310 万吨,CAGR 仅 1.60%,低于热塑 7.45 pct。热塑产量长期增长趋势明显,主要受益于汽车、家电等领域复合材料的快速渗透;热固 2020 年增速激增,超过 30%,主要受益于陆上风电抢装需求。
 
 
欧洲市场热塑产量增速也明显超过热固,目前仍以 SFT 为主。据 AVK 公司编制的《2021 复合材料市场报 告》,欧洲热固产量从 2011 年的 94.4 万吨小幅提升至 2021 年的 94.8 万吨,CAGR 仅 0.04%。同期 SFT、LFT、 GMT、CFRTP 等热塑产品 CAGR 达 3.26%。2021 年,热塑类产品产量同比增长 25.57%至 166 万吨,占比提升 3.12pct 至 56.04%。2021 年欧洲碳纤维增强塑料产量 5.2 万吨,过去 10 年 CAGR 为 10.59%,处于较快发展的阶 段。
 
玻纤增强热塑性材料更能适应当前环境,市场拓展不断有新突破。随着中国经济绿色化转型和绿色经济发展,热塑性复合材料已经在汽车及轨道交通轻量化、智能物流、绿色建筑、体育休闲及现代农牧业养殖等领域展现出了巨大市场潜力。例如,福建海源成功研发出建筑模板制品,进入建筑模板市场;杭州华聚的连续挤拉成型的热塑性蜂窝夹芯板材已经成功应用于国内外各类箱式货车、物流车和房车领域;河北立格与中铁联运物流股份有限公司签订战略合作协议,成功进军物流运输行业。
 
从短玻纤到长玻纤
 
玻纤长短对复合材料性能影响较大,长玻纤性能优于短玻纤。玻璃纤维增强热塑性复合材料根据玻璃纤维 增强方式的不同,分为短玻纤(SFT)、长玻纤(LFT)和玻璃纤维毡(GMT)增强三种类型。短玻纤长度一般在 6mm 以下,长玻纤一般在 10-15mm。据研究显示,玻纤的长度越长,玻纤复合材料制品的性能就越好。SFT 是玻纤增强热塑性复合材料的主要品种,具有成型工艺简单、周期短等优势,但是其性能在很多地方仍不能满足汽车零部件的需求。相比之下,LFT 增强热塑性复合材料的性能比 SFT 高很多,在相同玻纤质量分数的情况下,长玻纤增强材料的拉伸强度、弯曲强度、冲击强度均高于短玻纤增强材料。因此,LFT 产品在汽车领域的应用将会比 SFT 更加广泛。
 
长玻纤相较于短玻纤、玻纤毡具备超额增速。据 RePort link 的市场研究预计,2017 年至 2021 年之间全球 长玻纤增强材料的复合增长率为 8.5%,短增强玻纤热塑性塑料的复合增长率仅为 4.5%;同期欧洲市场 LFT 实际产量复合增速 3.68%,SFT 产量复合增速仅 0.61%。从玻纤加工形态来看,由一步法直接生产的 LFT 生产成 本理论上要比 GMT 材料成本低 20%~50%,抗冲击性能和生产效率等综合性能反而有所提升,因此近年来欧洲市场 LFT 的市场份额更具优势且逐年提升。全球汽车行业的 LFT 消耗量约占 LFT 总消耗量的 80%,而当前汽车等交通工具轻量化已经成为交通行业的增长热点,需求空间将进一步扩大。
 
二、汽车轻量化大时代来临,或成为拉动玻纤需求的最快马车
 
政策推进“以塑代钢”,汽车及交通领域受影响显著。我国自“十一五”以来,就明确将“以塑代钢”作为 节约能源和资源的重要举措,并将“复合材料、高分子材料、工程塑料及其低成本化、新型塑料合金生产”作 为调整产业结构、发展高新技术的重点。我国改性塑料产量从 2010 年的 705 万吨增长至 2021 年的 2650 万吨, CAGR 达 12.8%,改性化率从 16.2%逐步提升至 24.0%。据前瞻产业研究院统计,2020 年汽车领域改性塑料需 求大约占比 19%,仅次于家电领域。考虑到汽车改性塑料对于强度有更高要求,因此对玻纤增强材料的需求拉 动更为明显。
 
640 (1)
 
微观数据层面,汽车改性塑料销量占比呈提升趋势。以国内最大的改性塑料龙头企业金发科技为例,2021 年车用材料销量同比增长 26.82%至 61.75 万吨,在改性塑料销量中占比提升 3.9 pct 至 35.4%,这主要受益于国 内新能源汽车销量的翻倍式增长。
 
横向比较:我国塑钢比处于较低阶段,人均玻纤消费量尚有较大提升空间。相较于国外市场改性塑料行业 的成熟发展,我国塑钢比水平较低。2012 年,美国塑料和钢铁应用(体积)比例为 70:30,德国为 63:37,世界平均水平也达到 50:50,同期国内塑钢比仅 30:70。从细分的玻纤增强塑料市场来看,虽然我国是世界玻纤产量第一大国,但 2018 年玻纤人均消费量仅为 2.4 千克/人,不到美国人均消费量的 45%,未来国内玻纤增强材料渗透率存在长期提升空间。
 
纵向比较:当前我国塑钢比还有持续提升的动力。通过跟踪钢材、塑料产量,并假设钢铁密度 7.85g/cm、 塑料密度 0.9g/cm,折算出 2021 年塑钢比约为 42:58。塑钢比较 10 年前提升明显,目前仍低于世界平均水平, 未来仍有提升动力。
 
2021 年国内玻纤增强复合材料制品产量维持较高增长,结构上实现从风电到汽车轻量化的交棒。2021 年全 国玻璃纤维增强复合材料制品总产量为 584 万吨,同比增长 14.51%,延续了 2020 年的亮眼增速。2020 年主要 受益于风电市场的强劲增长,而 2021 年则受益于新能源汽车产量的增长,以及电子电气领域玻纤增强材料的支 撑。随着下游需求完成“交棒”,2022 年及以后汽车领域有望成为拉动玻纤需求最快的马车。
 
640 (2)
 
2.1 汽车:轻量化趋势持续创造需求,新能源车大爆发贡献新动能

传统汽车:轻量化持续渗透
 
汽车减重为长期趋势,轻量化势在必行。汽车工业发展的过程中,轻量化一直为多方关注的重要领域,就其原因在于以下几点:
①汽车轻量化是节油和降低排放的重要方法和途径。实验表明:油耗与车体质量成线性 关系,每百公里油耗 y(单位 L)和汽车自身质量 x(单位 kg)的关系为:y=0.003x+3.3434,即对一般汽车而言,质量减少10%,可节油 6%~8%,可以相应减少二氧化碳排放;
②从驾驶方面来讲,汽车自重减轻后,加速性提高,稳定性、噪音、振动方面也均有改善;
 
③从安全性考虑,汽车质量减轻后,碰撞时惯性小,制动距离减小,车辆对人的冲击小得多,所以更加安全。
 
 
 
因此,在双碳政策背景下,叠加环保、交通安全要求趋严,汽车轻量化是长期趋势。
 
中国制造 2025 规划明确轻量化路线,材料为轻量化筑牢根基。汽车轻量化的途径一般主要表现在三个方面: 
 
①结构轻量化:最容易实施也是成本最低的一种设计手段;
 
②轻量化材料:最基础也是最有效的手段;
 
③先进工艺:先进轻量化材料应用的保障。
 
 
中国制造 2025 规划了重点领域技术路线图,从上述 3 种途径对汽车轻量化 做了重要规划和思路建设,其中轻量化材料方面多次强调使用纤维复合材料作为发展方向。随着该技术路线图的不断推进,纤维增强材料已经承担起轻量化的重任,成为轻量化材料中的“主力军”。
 
玻纤增强材料质轻价廉,为当前汽车轻量化材料首选。玻纤增强的复合材料已成为汽车工业的主要原材料之一,其优势在于拥有优良的材料特性、良好的经济性、大量供应的可能性、较好的可回收性。玻璃纤维增强型热塑性复合材料具有低密度、设计自由度高、耐腐蚀、抗冲击以及吸收震动等优点,可以替代钢、铝用于结构件,轻量化效果显著。现在最常用的长玻纤增强型材料已经可以完全取代金属材料用于前端模块上,达到轻量化目的,减重达 30~50%。目前,大众和马自达等合资企业已有较普遍的应用,改用长玻纤增强型材料后,无论是重量还是成本都有明显下降,可谓“质轻价廉”。
 
640 (3)
 
玻纤增强材料应用场景广泛,由内而外对全车实现覆盖。随着玻纤增强材料工艺技术的不断发展,玻纤增强材料在汽车轻量化中的应用场景也越来越广泛。回顾玻纤增强材料的发展过程我们可以看出,前期玻纤热固性增强材料,例如片状模塑料(SMC),树脂转移模塑(RTM)技术,一般用于车门、引擎盖、翼子板等 A 级表面制件,而现阶段广泛应用的玻纤热塑性增强材料进一步扩大了应用范围,包括仪表盘支架、前端支架、保险杠、车底护板以及发动机周边部件,实现了对全车大部分零件和次结构件的覆盖。
 
玻纤增强材料能较完美的配饰各个部件,轻量化效果显著。玻纤增强材料不仅在汽车轻量化中的应用场景 实现了多元化,更是在多种类的同时保证了每一个组件都能发挥玻纤增强材料的优势。在福特和捷豹的车门板中应用了 Cslstran+PP-GF20-05 热塑性长纤维增强材料,在高度集成的基础上实现了高强度、高颜值以及高冲击吸能效果;在福特的前端板块中使用了长玻纤(LFT)增强聚丙烯(PP),实现了单车减重 1.4kg,降低成本3美元,并满足了传统车辆上部件变形<1mm 的结构要求。
 
国内车用玻纤增强材料渗透空间巨大。20 世纪 90 年代,发达国家汽车平均用塑料量 100~130kg/辆,占整 车重量的 10%左右;日本每辆汽车平均使用塑料量 100kg,占车重的 12%。欧洲汽车塑料占车重量的 10%左右。1996 年,北美轿车的塑料平均用量为 116.5kg/辆,2003 年增加到 142kg。截至 2013 年,以德国为首的欧洲国家单车用塑料复合材料(以玻纤增强塑料为主)已经达300~365kg,占车重22.5%;美国的单车用量也达到 200~249kg, 约占车重 16.5%;而我国单车用量仅为 90~110kg,仅占车重 8%,远远低于发达国家的平均水平。在汽车轻量化的大趋势下,国内玻纤增强材料市场前景广阔。
 
640 (4)
 
新能源车:需求大爆发贡献新动能
 
燃油车退出是大势所趋,新能源汽车轻量化成为行业痛点。随着石油资源的逐渐变少以及人类生态环境保护的需要,近年来许多汽车工业发达国家已开始布局汽车产业升级战略,荷兰、挪威、德国、印度、法国、英国等先后通过不同的组织和方式提出了停售燃油汽车时间表,沃尔沃、宝马、大众、丰田等名车企也先后透露出停止生产燃油车的动向和计划时间表,燃油车退出市场,新能源汽车“新王上位”已成定局。然而据国家新能源汽车技术创新中心总经理原诚寅表示,新能源汽车由于电动化、智能化等配置需求,增加了三电系统及大 量智能化设备,相比较传统汽车增重较多。研究表明,新能源汽车质量降低 10%,对应续航里程可增加 5%~10%,节约15%~20%的电池成本以及 20%的日常损耗成本。因此,新能源汽车整车减重的需求比传统汽车更加迫切。
 
当前主流新能源车普遍偏重,日系燃油车整体最轻。以各大厂商部分中型车为例,特斯拉 Model Y 的质量达 2010kg,基本处在其所有车型的中位数水平,最轻的 Model 3 也重达 1761kg。国内新能源车以比亚迪为例, 各车型重量中位数大致在1940kg。德系奔驰、奥迪中型燃油车质量约 1600-1700kg;而宝马则更接近日系车,质量在1400kg 的量级。
 
除了传统部件轻量化,新增部件也将带来玻纤增强材料需求。除了对传统部件轻量化的需求迫切,新能源汽车新增的零部件以及配套装置也面临减重需求。玻纤增强尼龙因为质量轻、强度高、耐磨耐腐蚀、绝缘性能好而在新能源车中广泛使用,具代表性的应用有交流电机外壳、电池箱、充电系统(例如充电枪模块)、电子控 制器零部件、旋转变压器等。因此,玻纤增强材料不仅在传统车型、传统部件中快速渗透,也将在新能源车、 新模块中也将占据份额。
 
2021年我国汽车市场实现恢复性正增长,新能源车销量占比 13.4%。我国汽车销量经历了 2018-2020 年连续 3 年下滑,在 2021 年实现恢复性正增长。2021 年汽车总销量达 2627.5 万辆,同比增长 3.81%;其中新能源汽车销量同比增长 157.48%至 352.05万辆,在汽车总销量中占比提升 8pct 至 13.4%。
 
640 (5)
 
2022 年 1-6 月新能源汽车销量继续实现翻倍增长,同比增长 115.61%至 259.95 万辆。1-6 月,汽车总销量 同比下滑 6.47%至 1205.7 万辆,剔除新能源车后降幅约 19.07%,主要系疫情扰动下增速受到压制。而随着新能源汽车销量的爆发式增长,将带动全年汽车总销量增速回升。
 
需求测算:2025 年国内汽车用玻纤增量需求超 80 万吨,CAGR 达 16%
 
参考<中国制造 2025>重点领域技术路线图(2015 版),要求 2015-2025 年汽车累计减重 30%,平均每年减重 3%,参考大约 2.0/1.6 吨的初始重量,大约每年减重 60/50kg。到 2025 年,预计新能源汽车/燃油车改性塑料使 用比例分别提升至 24%/20%。参考中信建投电新团队对新能源汽车销量的判断,以及我们对于燃油车逐年减量的保守估计,预计 2025 年汽车改性塑料需求量提升 391 万吨,几乎全部由新能源汽车贡献;单车平均用量提升约 136 kg,其中新能源车平均提升 181 kg,燃油车平均提升 71 kg。预计 2025 年国内汽车用玻纤增量需求超 80 万吨,2021-2025 年 CAGR 达 16%。热塑短切属于玻纤粗纱中的高端制品,若按照 8000 元/吨的均价,2025 年汽车用玻纤市场约 145 亿元;近 3 年金发科技改性塑料均价约 1.37 万元/吨,由此估算 2025 年汽车改性塑料市 场规模约 1180 亿元。
 
2.2 其他领域:紧扣交通与轻量化主线,玻纤材料长期渗透

航空航天:特种高性能玻纤不可或缺,金属材料之友
 
航空航天复合材料用量比重逐年增大,特种高性能玻纤优点显著。当前复合材料与铝合金、钢、钛合金 3 大金属材料成为航空工业不可或缺的材料。无论是民用客机还是军用飞机,都需要使用高性能玻璃纤维增强的复合材料,这种材料具有优良的力学性能、优异的抗疲劳和耐腐蚀性,优良的透波介电性能;其结构利于整体 设计和制造,可实现 20%~30%的结构减重,在提高飞机结构效率和可靠性的同时,降低制造成本。欧洲空客公 司最具代表性的 A380-800 飞机重约 583 吨,机身大部分是铝,但也采用了 20%以上的先进复合材料。除了碳/ 环氧、玻纤/环氧复合材料,还有 GLARE(玻璃纤维增强铝)复合材料,它是由多层玻璃纤维和铝合金粘合而成,比传统用的铝合金轻,但有更佳的抗侵蚀和抗撞击能力。目前,先进的军用飞机、民用客机的复合材料用 量迅速增加,预计今后复合材料的用量将超过飞机总重量的 50%。
 
特种高性能玻纤在航空领域多元化发挥优势,提高飞机性能。航空用特种高性能玻璃纤维的种类主要包括 2 大类,一类用于结构增强的主、次承力结构件中,如 GLARE 层板、直升机旋翼等;一类是应用在有特殊电性 能要求的功能结构件以及内饰中,如机头罩、天线罩和雷达罩,以及舱内地板等。在主承力结构件中,玻纤增强材料主要用于直升机的旋翼桨叶,提高了桨叶的抗拉刚度、挥舞及摆振刚度以及抗冲击性能;在次承力结构件中,玻纤增强材料主要用于飞机的机翼固定前缘、方向舵、尾翼和尾锥等部件上;在内饰方面,主要将高均匀性缎纹玻璃纤维织物与阻燃环氧、酚醛制成的复合材料用于飞机的地板和天花板等部分,其具有高比强度和比刚度的特点,阻燃和低烟雾的优势明显。
 
640 (6)
 
玻纤复合材料占航空复合材料市场比例不断提升,其需求量在 2023 年有望将达到 5.02 万吨。据前瞻产业研究院数据,玻纤复合材料在我国航空航天领域应用较广,占航空复合材料市场的比重有望逐年提升;2017 年该比例约为 14.2%,预计 2023 年将提升至 18.5%。随着我国航空领域的发展对耐用、重量轻、无腐蚀产品的需 求日益增加,2023 年玻纤复合材料在航空领域的需求量有望达到 5.02 万吨。
 
船舶:中小渔船乘风破浪,玻纤材料广阔蓝海
 
玻纤增强材料为 FRP(玻璃钢)渔船的主流材料,玻璃钢渔船或代表渔船行业的发展趋势。FRP 渔船的主 流材料为玻璃纤维增强材料。相比于木材和金属材料,玻璃钢在满足力学性能要求的同时,具有自重小,耐盐水腐蚀,隔热性能好,可设计性强等特点。
 
1)航行性能方面,玻璃钢船在波浪中行驶稳定性更强,抗风能力更好;相同条件下,玻璃钢渔船的航速比钢制渔船提高了 0.5-1.0 节。
 
2)在经济性方面,玻璃钢船燃油消耗比同尺寸的钢制、木质渔船更小。玻璃钢本身耐腐蚀、抗老化的优点也增加了玻璃钢渔船的寿命,玻璃钢渔船的理 论寿命一般在 50 年左右,为钢制渔船的 4-5 倍,维护频率和费用也远低于钢制渔船。
 
 
当前我国木制渔船存量巨大,渔船更替将带来玻纤增强材料需求。目前,FRP 渔船是国内外渔船的主流方向。在欧美发达沿海国家,木质和金属制中小型渔船已经基本淘汰,FRP 渔船的占比高达 80%~90%。其中,美国的近海渔船已经全部更换为 FRP 渔船,每年用于制造渔船的 FRP 总量超过 20 万吨。日本的FRP渔船起步较晚,但通过木质渔船 FRP 改造,2008 年其 FRP 渔船的保有量为 35 万艘,占日本渔船总量的 90%。2021 年末我国渔船总数 52.08 万艘,较 2015 年削减一半,仍是全球渔船最多的国家,但玻璃钢渔船占有率 极低。截至 2013 年,全国 20 米以上纯复合材料作业渔船不足 500 艘,所有尺寸的玻璃钢渔船仅占渔船总量的 1%左右。同等船长的玻璃钢渔船造价比钢制渔船高 30%~50%,但考虑到使用寿命,玻璃钢渔船更具性价比。借鉴国外“大型渔船钢质化,中小型渔船玻璃钢化”的经验,倘若未来 10 年我国 FRP 渔船保有量逐步达到 30 万艘,每艘使用 10 吨 FRP,则面临 300 万吨总替代空间,年均玻纤复材需求 30 万吨。随着“以塑代钢”推进, 在如此大的存量、如此低的占有率下,船舶用玻纤增强材料将面临一片广阔“蓝海”。
 
家电:轻量化、定制化持续推进,拉动玻纤增强复合材料增长
 
玻纤增强复合材料性能优良,拥有丰富的家电产品应用场景。家电行业是改性塑料行业最重要的下游产业 之一,改性塑料拥有质轻而高刚度、安全、无毒、节能环保、抗菌抗霉变、低成本等特性,能满足人们对家电 轻量化、健康化的需求。随着改性设备、改性技术不断发展成熟,过去占塑料行业 90%以上的通用塑料通过改性提高了强度、耐热性等指标,具备了工程塑料的性能,并已经抢占了部分传统工程塑料的应用市场。玻纤增强改性作为塑料改性的重要途径之一,在家电产品中应用广泛。
 
640 (7)
 
家电为我国改性塑料第一大消费领域,2020 年应用占比 34%。改性塑料下游主要为家电、汽车、办公设备、 电子电气和电动工具,其中家电是第一大消费领域,2020 年占比约 34%。2021 年,我国空调产量为 21835.7 万台,同比增长 3.66%,彩电产量为 18496.5 万台,同比下降 5.76%,家用电冰箱和洗衣机产量分别为 8992.10 万 台和 8618.50 万台,同比分别下降 0.25%和增长 7.17%。整体来看,2021 年我国四大家用电器产量较 2020 年实 现小幅增长。
 
以空调、冰箱为例,2021 年城镇和农村冰箱渗透率均超过 100%,农村空调保有量快速提升至 89%,但仍有较大的增量空间。随着我国经济的恢复和居民收入不断提高,家电市场特别是县城、农村等下沉市场将带来 较大的增量需求,进而拉动改性塑料及玻纤增强复合材料销量的增长。未来家电行业加快向智能化方向升级, 消费者不仅对家用电器的阻燃性、强度、耐候、环保等基础性能有较高要求,而且对易成型、色彩丰富、吸震 消音等定制化和轻量化提出了挑战,未来高端家电对改性塑料及玻纤增强材料的用量及性能需求将不断提升。
 
供需判断:2022 年产能投放加快,格局仍然集中
 
中国是全球最大的玻纤生产国,产量占比超过 66%。2012 年至 2020 年,全球玻纤总产量由 530 万吨增加 至 820 万吨,年均复合增长率 5.61%;同期国内玻纤总产量由 288 万吨增加至 541 万吨,年均复合增长率 8.20%。2021 年国内玻纤产量达 624 万吨,同比增长 15.2%。玻纤是建材行业中少有的出口产品,2021 年度玻纤及其制品出口量为168.3 万吨,同比增长 26.54%,出口占国内产量比例提升 2.4 pct 至 26.97%。
 
640 (8)
 
 
更多>同类行业资讯

推荐行业资讯
点击排行
工信部备案号:鲁B2-20041020-3    版权所有  德州博维网络信息服务有限公司     
热线:400 9696 921  电话:0534-2666809    传真:0534-2220102    邮箱:frp@cnfrp.com
 Copyright (c) 2002-2022 CNBXFC.NET All Rights Reserved.  
     

  鲁公网安备 37140202000173号